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ABSTRACT
We consider the one dimensional porous media problem u = (uz)xx.
u{0,x) = uo(x). with initial data u, compactly supported. We deduce a
coordinate transformation x = X(t,p) which renders stationary the free
boundary separating {(t,x): u(t,x) > 0} and {(t,x): u(t,x) = 0}. We
describe a simple difference scheme based on this transformation and show
that, even with a fairly crude mesh, the free boundary is tracked quite

accurately.
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SIGNIFICANCE AND EXPLANATION

L~ gmers

,,j>w@ consider the one-dimensional porous media problem u, = (“i)xx'
u(0,x) = uo(x) for initial dataa~20 which vanishes outside a finite
interval. Solutions of this problem contain a free boundary separating
points (t,x) with u(t,x) > 0 from those with u(t,x) = 0, We deduce a
coordinate transformation x = X(t,p) which renders this free boundary
stationary in time. We describe a simple difference scheme based on this

transformation and show that, even with a fairly crude mesh, the free boundary

is tracked quite accurately.
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A COGEDINATE TRANSFORMATION FOR THE POROUS
MEDIA EQUATION THAT RENDERS THE FREE~BOUNDARY STATIONARY

Morton E. Gurtin, Richard C. MacCamy, and Eduardo A. Socolovsky
1. Introduction.

In this paper we study degenerate diffusion problems in which free
boundaries occur, our major objective being the development of numerical
procedures which effectively track these boundaries. For convenience, we
introduce our ideas in terms of the one-dimensional porous media problem;
generalizations are given at the end of Section 2 and in Section 4.

Consider the problem of determining wu(t,x), t » 0, x € R, such that

2
ut-(u )xx I}

(P)
u(0,x) = uo(x) P

with initial data u, supported on a finite interval:
uo(x) > 0, -a<x<a ,

(1.1)
uo(x) = 0 otherwige .

This is (a special case of) the porous media problem (cf., e.q., [i]). As is
known ([2 - 6]): there exists a unique weak solution u; at each t the
support of u is a finite interval

g_(t) < x < () 3

inside its support u is smooth, but across ct(t), u_ 1is generally

x
discontinuous;

T () = =20 (t,5,(8)) . (1.2)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
work was supported in part by the National Science Foundation under Grant Nos.
MCS-8001944 and MCS-8102380 and in part by the United States Army under
Contract Wo. DAAG29-82-X-0002.
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There exist numerical procedures for Problem (P) (cf., e.g., {7 - 9]),
all of which seem to encounter some difficulty in tracking the free boundaries
x = C*(t). The main feature of our method is the determination of a family of
curves

x = X(t,p), X(0,p) =p
along which the free boundary propagates:
Ct(t) = X(t,ta) . (1.3)

Writing (P)1 in the form of a mass balance law

u, + (uv)x =0 (1.4)
with u(t,x) a "density” and
v = -2u, (1.5)
a "velocity” (cf., e.g., [10]), we see, using (1.2), that the free boundary
propagates with the velocity v(t,x) of the medium; hence property (1.3) will
follow provided we take X(t,p) to be the solution of
xt(t,p) = v(t,X(t,p)), X(O0,p) =p . (1.6)
Within this context x = X(t,p) represents the motion of the medium with
material points labeled by their positions p at t = 0.
Using these ideas, we are able to reduce (P) to the following initial-
value problem for X:
x;xt = 2uoxpp - 2u6xp ’ (p')
X(0,p) =p .
(Here and in what follows x: = (xp)“ .) The free boundary is then given by
(1.3), while U(t,p) = u(t,X(t,p)) satisfies

v=xTtu (1.7)
P

o r

a relation which expresses balance of mass in material (Lagrangian)
*

coordinates. Our procedure for solving ( ) consists in solving (P ) on the

fixed interval -a € p < a of support of ug.
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In Section 2 we establish a uniqueness theoream for (P'). and we show that
given a sufficiently regular solution X of this problem, (1.7) generates, at
least locally in time, a weak solution u of our original problem (P).

The determination of u(t,x) from U(t,p) requires that X(t,p), as a

function of p, be invertible at each t, a condition related to the non-

vanishing of xp. We show, in Section 2, that xp > 1 for all time whenever

ua < 0 on its support, and that xp(t,a), say, tends to zero in a finite

time T whenever ua(a) = 0, ua(a) > 0. We show further that under the

latter two conditions X(t,a) = a for 0 < t < T, so that the free boundary

is vertical until t =T (cf. [6, 11]). We also establish a growth estimate
for the Lz(-a,a) norm of xp(t,-).

In Section 3 we describe a simple difference scheme for Problem (P') and
give some calculations which demonstrate the utility of our procedure; in
particular, we show that even with a fairly crude mesh the free boundary is
tracked quite accurately.

While our paper is devoted to the one-dimensional porous media problem,
our method seems to have considerable generality: in Section 4 we derive the
analog of (P.) for the porous media problem in R'; in a future paper we will

discuss applications to more general equations and to Stefan problems.




2. The initial-value problem for X(t,p).

We first proceed formally. Let u be a solution of (P) with initial
data u, subject to (1.1), let X(t,p) be the solution of the initial-value
problem (1,6), and define

U(t,p) = u(t,X(t,p)) , (2.1)
or more generally, for any function f(t,x),

£°(e,p) = £(t,X(t,p)) . (2.2)
Then by (1.4), (1.6), and (2.1),

* * - *
U, = (“t +uyv) = =(uv,) , xpt (vx) xp v
so that
(UXP)t - ntxp + prt =0 , (2.3)

0(o0,p) = u(0,p) = ug(p), Xp(o.p) =13

hence
U= Xp uo . (2.4)
Further, by (2.1),
L ]
| Up = (uy) X5 .
| and (1.5), (1.6) yield
i -1
: X = "20 X . 2.5
¢ pp ( )

Equations (2.4) and (2.5) form the basis of our method. It is these
equations that we will solve numerically in Section 3. Note that we can use
(2.4) to eliminate U from (2.5); this leads to the initial-value problem
; (P") for =x.

i Our procedure for solving (P) is based on solving (P') for t >0 and
p in the fixed interval [-a,a), the support of ug. (We will give a
uniqueness theorem to show that boundary conditions at p = ta are not

needed.) Let X be a solution of (P'). Since xp =1 at t =0, there
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exists a T > 0 such that

xb >0 on [0,T) x [-a,a] .

Ct(t) = X(t,ta) ,

8, = {(tyx): T () <x<g (), 0<ECT}

Then for each t € [0,T) the mapping p* X(t,p) is a bijection of [-a,a)

onto the interval [C_(t).c+(t)]t letting P(t,x) be such that
X(t,P(t,x)) = x
(1.e., P(t,*) is the inverse of X(t,*)), we define

U(t,P(t,x)), (t,x) € QT

u(t,x) = (2.6)

0, otherwise
with U given by (2.4). We then expect the resulting function u to be the

weak solution of (P). We now show that this expectation is indeed
justified. To avoid repeated hypotheses we assume, for the remainder of the
section, that

up > 0 on (-a,a), uy = 0 otherwise, uy € C(R) N C%(-a,a) . (2.7)

*
FPurther, we will use the term solution of (P ) on [(0,T] for a solution X
on {0,T) x [-a,a) with X, Xeo xp, xpp, xtp' and xppp continuous on
{o,?) x [-a,al; if, in addition, xp >0 on (0,7) x [(~a,a), then X is

reqular.
Theorem 1 (Consistency). let X be a reqular solution of *") on [0,T),

»
1~
s
*

nd let u be defined by (2.6). Then:

() u>0 on R, u=0 otherwises
(i1) u(x,0) = ug(x) for x € Ry
°
(110) u, = (), in 8y

(iv) ‘t(t) = -2ux(t.ct(t)) and tct(t) >0 for te [0,T).
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Theorem 2 (Uniqueness). For any T > 0 there exists at most one regqular

solution of (P°) on [0,T).

Proof. Assertion (i) follows from (2.4), (2.6), (2.7), and the
inequality xp > 0y (ii) is a consequence of (2.6), (2.7), and the
identities P(0,x) = x, *F(O,p) = 1.
Next, (P'), and (2.4) imply (2.5) and (2.3), while (2.1) is a consequence
of (2.6). By (2.1) and (2.5),
- *
X, = -2(u,) , xtp = =2(u,,) Xp ' _(2.8)
where we have used the notation (2.2). Also,
- * * 2 *
U, (“t) + (u,) X, = (ut - 2ux) .
and hence (2.3) and (2.8)2 imply
o 2 » 2 *
= xp(ut 2ux - Zuuxx) xp[ut - (u )xx] s
since xp > 0, we have (iii).
Equation (2.8); leads to the first of (iv). Finally, since
uo(ta) =0, (P')1 implies
[} "2
C*(t) xt(t,ta) 2u6(ta)xp(t,ta) H (2.9)
but by (2.7), tu&(ta) < 0, and the remainder of (iv) follows. This

completes the proof.

Proof. let X and Y be regular solutions on [0,T). Choose

tg € (0,T); it suffices to show that X =Y on [0.t°] x [-a,al. By (P')1,

= - -2 - ] -2 - -2 - . -2
xt (uoxp ) uoxp 0 Yt = (qub )p qup .

If we subtract these equations, multiply by X - Y, and integrate from

pPp=-a to p=a, we obtain, after an integration by parts using

uo(ta) = 0,
14 a 2
3 ac f—. (x-¥)“ dp
(2.10)
a -2 -2 a -2 -2
X -Y X -Y )ap - ' (X -Y X-Y .
f_.uo(p p J(X, - Y )ap f_.uo(p p ) (X-Y)dp

T D Nk e ST bt B2 e e o
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Since

-2 -2 2_-2_-2
(° =¥ “)(X ~Y )m=(X +Y (X -¥Y )XY <o
P p)p p) P p”p p)pp ’
the f.rst term on the right side of (2.10) is < 0. Next, letting
-2 -2

= ' (X +Y )XY

L T L A
we find that

a -2 -2 1ra 2
-!_. up (X, = ¥ ") (x-¥)dp = 3 [ 1x=1) 1, vep

1 a w2 PP T
2 oy XD Volp + lx-n%I .
Since tua(:tl) € 0, we have iVy(ta,t) < 0; hence
tx-v)2u® <o .
-a
Further, as the solutions X and Y are both regqular, X and Y_  are

P P
bounded away from zero on [0,1:0] x [~a,al; hence there is a constant X

such that
MPI <K

on lo,tol x [~a,a).

Let

E(t) = [2 [x(e,p) - v(t,p)1 %0p
and note that £(0) = 0, since X and Y satisfy the same initial
condition. Thus if we integrate (2.10) from 0 ¢to ¢t and use the above
remarks, we arrive at the Gronwall inequality
E(e) < X [$ E(nar

for 0 < ¢t < tys which clearly implies X =Y on lo.tol x [-a,a).

Remark. We have not been able to establish (directly) existence for

Problem (P'). We note that existence can be inferred from existence for (P)

in conjunction with (1.6).
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Thus far all of our results have been local, as the initial condition

xp(o,p) = 1 only insures xp > 0 for sufficiently small time. There are

situations in which we can give a global re.ult.1
Theorem 3. Suppose that us <0 on (-a,a]. let X Dbe a solutionm o:i
(P')_og [0,T). Then X is regqular; in fact, xp >1 on (-a,a) x [0,7).
Proof. We let Z = X, and differentlate (P‘), with respect to p to
obtain
1.2

3, . _ - o ouw
zzt 2uozpp 6n°z zp+6u(',zp 2uoz . (2.11)

At t =0 we have 2z = 1, zp - zpp = 0 hence Z, > 0 at t =0 and Z > 1
for small t. Suppose Z were ever equal to 1. Then there would be a first
time t4 € [0,T] at which this occurs and a point Py with Z(t.,py) = 1.
1t Py e (~a,a), we would have zp = 0, zpp 20, and zt <0
at (ty,pq), which contradicts (2.11), since ua(p1) <0, If Py = -a,
then z, < 0 and zp >0 at (t4y,pq)s thus, since wuj(-a) = 0, “6(-.) >0,
and uS(-a) < 0, we again contradict (2.11). A similar argument applies at
X = a.

For initial data u, which is not concave one cannot expect to have
xp > 0 for all time. Knerr (6], generalizing results of Aronson [11), has
shown that if ua(b) =0 for b= a, say, then the free boundary emanating
from a Iis vertical for an interval 0 € t < T < ®, At t =T there is a

+
loss of smoothness and [ (t) begins to increase. We now show that this

phenomenon is related to the vanishing of xp.

1
Cf. Graveleau and Jamet [8]), who show that if ug is concave, then the
solution u of (P) will be concave for all time. With Uy, < 0, (2.8)

clearly implies xp 2 1.




Theorem 4 (Breakdown). Suppose that u,(b) =0 and uj(b) >0 for

b==-a or b=a, and put
T = (eul(b)]” . (2.12)
Let X be a solution of (P°) on [0,T). Then
(1) X(t,b) =b for 0< t<T,
(11) X (t,b) +0 as t*T.
If, in addition, X 4is regular on [0,T) and u is defined by (2.6), then
(1i1) Ut/ X(t,b)) + = as t+ T.

Proof. let =z(t) -xp(t,b). Since z(0) = 1, there is a tg such

that 2(t) >0 for 0< t< ¢t €T Thus, by (2.11), for 0 < t < ¢t

0 o’

zzz' = -2ua(b) (2.13)
and
3 -
Therefore, by continuity, we may take ty =T and (ii) follows. Moreover,

since £>0 on [0,7), (P") yields (i). Finally, by (2.8), and (2.13),

u (£,X(t,b)) = u(brz(t) "> ,
xX 0

and (1ii) implies (iii).

Under the hypotheses of Theorem 3 we have the following growth estimate

2 norm of X .

p
Theorem 5 (Stability). Suppose that uj <0 on (-a,al, and put

for the L

c = 8luj(-a) - uj(a)l. Let X be a solution of (P') on [0,T). Then

2, X;(e,p)dp <2a+ct (2.14)
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Proof. Note first that, since uo(ta) =0, (P')1 implies
-2
- - ]
xt(tot‘) 2“0(tl)xp (t,za) . (2.15)
We multiply (P')1 by x;axpp and integrate from p = -a to p = a. After an

integration by parts and the use of (2.15) we obtain

- a - ] a .
2 dt f 2{u xp -a = 2 I-a uoxp X d f'a “D(xp pdp .
If we 1ntegrate the last term on the right by parts, we find that
a -3.2
2 dt I_a xpdp +2[2 —a Uo%p XpplP

- - w2 a -1
4lugx 17, + 2 2, ugx dp

< 4[u6(-a)x;1(t,-a) - ua(a)1;1(t.a)l

C
‘-i,

since ua <0, tuo(ta) < 0, and xp ? 1. The estimate (2.14) follows upon

integration.
Observe that one obtains also the estimate
ft

in addition, since xp 21, (1.3) and (2.15) yield the inequality

x dp 4t € 2a + ct
-a “o"p *pp?P !
[ ] ‘ 0 .
Ict(t)l 2|ug(£a) ]
By (iv) of Theorem 1, #X(t,ta) > 0; hence for each t there is a Py

such that X(t,p;) = 0. The standard argument
Al
= | (P a 2
Ixep)) = 1[0 x e ErE] < 20 [, X2 (¢,£)aE]

and (2.14) therefore yield the estimate

IX(t,p)| € V2a(2a + ct .

d

Thus the width of the support of u(*,t) is at most O(tz).




d

Remark. Vasquez [12] has shown that this width is actually O(ts) by

proving that u(t,x) is asymptotic to a certain "fundamental solution”

u(t,x) of the form (3.5). Such fundamental solutions correspond to Dirac

distributions at t = 0 and as such the corresponding coordinate
transformation X(t,p) is not defined. If, however, one lets ta denote the
time for which the support of u(t‘.') has width 2a, and considers

ua(t,x) = u(t.+t,x), then the corresponding coordinate transformation xa is

well defined; in fact,

W

t +t
a

x.(t.p) = ( o) ] | - J

Guided by the results of {12], we conjecture that X(t,p) and xa(t'P) are

asymptotic as t + =,

Problem (P') can be given a weak formulation, which we now deduce. We

begin by writing (P')1 in the form
’ X = -(u X 2) - ux?
* t Op 'p 0p

If we multiply this equation and (P’)z by an arbitrary C

1 function w(p) and

integrate from p = -a to p = +ta we obtain, after an integration of parts,
a vo2 - -2, -
I_.uxt L e = ugX “w lap =0 ,
[2,x(0,p) - plwiplap = 0 .
Equations (2.16) constitute the desired weak formulation of (P').
The weak form (2.76) admits an approximate formulation in terms of finite

elements. In this connection it is important to note that the absence of

boundary conditions allows one to operate in the space H‘(-a,a). We expect

. aai—

these observations to be of great value in the extension to higher dimensions.

-{f=




Remarks
1. The p = constant trajectories ¢t~ X(t,p) are analogs of
characteristic curves, as the degeneracy in the porous media equation (P),
propagates along such trajectories. Indeed, this equation degenerates at
u=0, and
u(t,X(t,p)) = 0 if and only if uo(p) =0 ,
at least when the solution is regular (cf. (2.4)).

2. Problem (P) is a special case of the more general diffusion problem
u = q(“'“x)x .
(2.17)
u(x,0) = uo(x) '
with (2.16) degenerate in the sense that
>0 for u>0
qg(u.E)
=0 for u=0 .
As before, we seek curves x = X(t,p) along which this degeneracy propagates.
Pormally, such curves are generated, via (1.6), by writing (2.17)1 as a mass
balance law (1.4), since this law has the Lagrangian form
-1
u(t,X(t,p)) = XP (t,pu,y(p)

(cf. (1.7)). If we do this, we find that the resulting initial-value problem

for X(t,P) is:

g2, 1 (20
xt T % q(;‘ ‘X (i-) ) ’
0 p P PP (2.18)
X(O,p)-p .
As an example, the porous media equation is often considered in the form

u, = (u‘)xx (m>2) ;

e mw wa——

for this equation (2.18)1 becomes




3. MNumerical solutions.

Rere we describe a simple difference scheme for the initial-value problem
(P*). (We will actually work with (2.4), (2.5); rather than (P'),.) For
convenience, we assume that u, is symmetric: uo(x) = uo(-x). Then by
symmetry we can restrict ourselves to 0 < p < a provided we impose the
additional conditions

X(0,t) = O, UP(O,t) =0 . (3.1)
We want to solve the equations

-1
X =-x'©
t pp '
(3.2)
u=x"
Puo .

We choose At > 0 and Ap = aﬂ.1 for some iInteger N, introduce the
mesh ti = jAt, £ = 0,%,2,400, P, = nAp, n = 0,1,...,N, and write f: for
the value of a function f at the mesh point (ti'pn)’ We approximate (3.2)

by the difference scheme:

n
[ 4 ]
At n X n u x**1
n n

In these formulae u, = uo(py)e vhile L, and M represent the spatial

(3.3)

difference operators

(3.4)
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The formulae (3.4) are accurate to O(Apz) for functions satisfying
(3.1) with U(t.,a) = 0. 8ince the method (3.3) is partially explicit, we
would expect it best to take At = (Ap)zv with this choice we expect O(Apz)
accuracy.

The following explicit solution to the initial-value problem (P) - for

initial data a Dirac distribution - is given by Pattle [13]):

2
At -1, lyl < Ae)
alx,t) = AMe)
o, lyl > A(¢) (3.5)

1
3 - 3 2
Y = %%y, AE) = (/t)7, x) = rs/2)//n = a3t = x/12 .

We attempted to approximate the solution u(t,x) = u(t+1,x). Thus we have
173 173
a= (12xb) =9 « The results are presented in Tables 1 and 2.

In Table 1 we give the approximate and theoretical values of C+(t),
together with the relative errors, for a sequence of times. These
calculations are performed with ten subdivisions, so that Ap = 0.208. We
observe that even with this fairly crude mesh the free boundary is tracked

quite accurately. In Table 2 we present one of our calculations to determine

the rate of convergence. The results confirm the expected rate of (Ap)z.




Table 1

CA(t) and Cr(t), the approximate and theoretical positions of the right-

hand free boundary for Ap = 0,208, At = (Ap)z.

t (A(t) Cr(t) relative error
5.327 3.63826 3.63274 0.00152
9.653 4.43406 4.42904 0.00113

13,980 5.01550 5.01093 0.00091
18.307 5.48638 5.48218 0.00079
22.634 5.88782 5.88391 0.00063
26.960 6.24088 6.23721 0.00059
31.287 6.55793 6.55445 0.00053
35.614 6.84696 6.84365 0.00048
39,941 7.11343 7.11027 0.00044
44.267 7.36131 7.35827 0.00041
Table 2

c‘(1.108) and CT(1.108), the approximate and theoretical positions of the

right-hand free boundary at t = 1.108 for At = (Ap)z-

ap t*(1.108) £7(1.08) error
0.1040042  2.152773  2.152531 0.000242
0.0520021 2.152591 2. 152531 0.000060
‘ 0.02600 11 2.152546  2.152531 0.000015
0.0130005  2,152535  2,152531 0.000004

i Problem (P) with

i
i con2 %5, x < 1
{ uo(x) = (3.6)
s o, otherwvise

is discussed by Aronson [11], who shows that the corresponding free boundaries
are vertical for an interval 0 € ¢t < T, a result consistent with the

conclusions of Theorem 4, where for (3.6),
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r = (3x%)") ~ 03377 .

We also performed a numerical experiment for the initial data (3.6); the
results are shown in Table 3. It is seen that the free boundary is indeed
roughly vertical for t < T.

Table 3
CA(t), the approximate position of the right-hand free boundary for

ug(x) = cos2 ﬁ. Here Ap = 0.025, At = (Ap)z.

2
t tl(t)
0.00375 1.0000016
0.99750 1.0000039
0.01500 1.0000130
0.02000 1.0000293
0.02500 1.0000752
0.03000 1.0002330
0.03125 1.0003195
0.03250 1.0004445
0.03375 1.0006275
0.03500 1.0008996
0.03625 1.0013092

0.03750 1.0019303
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4. Extension to R°.

The porous media problem in ®  consists in finding a scalar tunction
u(t,x), t >0, x & 2", such that

2
ut Al(“ ) ¢

u(0,x) = “0‘5) .
(Here and in what follows A, div, and YV, respectively, denote the
Laplacian, divergence, and gradient operators in r.)
Guided by our one-dimensional analysis, we rewrite (Pn)1 as a balance

law

u, * divg(u!) =0

with
v= -2V§u v
and we take X(t,p) to be the solution of the initial-value problem
X (t,p) = y(t,X(t,p)), X(0,p) = p . (4.1)
Proceding as before, we define
O(t,p) = u(t,X(t,p))

and note that

L] *
U, =(u +yv°Vu =-(u dvy . (4.2)

~ ~

z2=vVX

¥ ’
and assume that det Z > 0. Then, using the identities (cf., e.g., [10], [- ]
77)

-1

(Qet 2) = (det 2)tr(z.Z ) ,
-1 .

tr(z, 2 ) = (dv_v)

in conjunction with (4.2), we conclude that

(0 det 2) =0
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and hence that
U = (det 5)"1\:0 .
On the other hand, by the chain-rule,
-
VO =2(Vw .
R I
Thus, using (4.1), we arrive at the following initial-value problem for X:

-1
v’!T‘!t = =2y, u = (det V!) YUy *
(P)
n
X(0,p) = p .,
whexe V=V ,
R

A careful analysis of (P:) is beyond the scope of this paper. Our
ultimate hope is to show that when
ug >0 on A, ug = 0 otherwise, (4.3)
with A compact and connected, Problem (Pn) reduces to solving (P;) on the
fixed region A for all time.

*
In view of (4.3), uo(g) =0 for p € 3A. Thus, by (Ph).xt(t,g) 0

~

at any p € 3A for which Vuo(g) = 0, at least as long as the solution
remaing regular.

Remarks.

1. The p = constant curves t » X(t,p) are analogs of bicharacteristic
curves in the theory of partial differential equations (cf. Remark 1 at the
end of Section 2).

2. For Problem (Ph) with n > 2, regularity of the free boundary F is
essentially an open question (cf. [14]). The formulation (P:) might be
useful in attacking this question, as

F= {X(t,p) : pe@ 3, t >0} .

Moreover, since regularity is a local question, the probleam of proving that
X(t,*) 1is a bijection is trivial: it follows, at least locally, from

X(0,p) = p, where we have chosen the time scale with t = 0 the time near




vhich regularity is sought.
3. For the more general equation
n
v, Az(u ) {m > 2)
L
the first of (Pn) is replaced by

T 2
V!Et--nu-vu .
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